一张图让你彻底理解聚簇索引与普通索引的区别[经典]

mysq_index

下面分析下索引和锁的关系。
1)delete from msg where id=2;

由于id是主键,因此直接锁住整行记录即可。
                                                                               图5
2)delete from msg where token=’ cvs’;

由于token是二级索引,因此首先锁住二级索引(两行),接着会锁住相应主键所对应的记录;
                                                                       图6
3)delete from msg where message=订单号是多少’;

message没有索引,所以走的是全表扫描过滤。这时表上的各个记录都将添加上X锁。
                                                                        图7

强烈推荐阅读:https://yq.aliyun.com/articles/5533

 

MySQL索引背后的数据结构及算法原理

摘要

本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。

文章主要内容分为三个部分。

第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。 Continue reading

mongodb索引讲解与性能调优

mongodb索引规则基本上与传统的关系库一样,大部分优化MySQL/Oracle/SQLite索引的技巧也适用于mongodb。

一、 为什么用索引:

当查询中用到某些条件时,可以对该键建立索引,以提高查询速度。

如果数据量很多且查询多于更新时,可以用索引提高查询的速度。

二、 索引管理:

a)         查询索引:

  1. 查询已有索引的明细:

查询索引很简单,比如说需要查询mailaccess数据库中的Mail collection上的索引时:

mongo                          进入mongo

MongoDB shell version: 1.8.1

connecting to: test

> use mailaccess                  进入mailaccess database

switched to db mailaccess

> db.Mail.getIndexes()             查询索引明细

[

{

"name" : "_id_",

"ns" : "mailaccess.Mail",

"key" : {

"_id" : 1

},

"v" : 0

},

{

"_id" : ObjectId("4df063ac48857df7ac35c348"),

"ns" : "mailaccess.Mail",

"key" : {

"user" : 1,

"folderId" : 1,

"mailfilename" : 1

},

"name" : "user_1_folderId_1_mailfilename_1",

"v" : 0

},

…… Continue reading

MongoDB 索引数据类型优化,节省60%内存

最近trunk.ly的工程师通过mongostat发现了大量的page fault,然后通过检查发现,他们的索引已经超出内存限制了(没有keep all index in RAM)。于是他们决定开始减小索引大小,通过测试得出了如下的数据,不同的数据类型的索引大小有2到3倍的差距。

虽然能够想像得到,但是直观的数据图可能让我们更深刻的认识到。他们的测试再一次告诉我们:给索引定一个好的数据结构是多么重要。

这是测试结果图,分别是用int、MongoDB的ObjectID、base64和md5的字符串做索引产生的索引大小:

测试过程也非常简单,首先用下面脚本将各种不同数据结构的数据写入到不同的collection里:

#!/usr/bin/env python

import pymongo
import bson
from pymongo import Connection

db = connection.test_database

print('ObjectID')
for i in range(1, 1000000):
    db.objectids.insert({'i': i})

print('int')
for i in range(1, 1000000):
    db.ints.insert({'_id': i, 'i': i})

print('Base64 BSON')
for i in range(1, 1000000):
    db.base64s.insert({'_id': \
        bson.Binary(hashlib.md5(str(i)).digest(),
        bson.binary.MD5_SUBTYPE), 'i': i})

print('string')
for i in range(1, 1000000):
    db.strings.insert({'_id': hashlib.md5(str(i)).digest(), 'i': i})

然后获取每个collection的index大小,得到如下的结果,画成上面的图:

> db.base64s.stats()
{
        "totalIndexSize" : 67076096,
}
> db.objectids.stats()
{
        "totalIndexSize" : 41598976,
}
> db.ints.stats()
{
        "totalIndexSize" : 32522240,
}
> db.strings.stats()
{
        "totalIndexSize" : 90914816,

}

原文链接:How to save 200% RAM by selecting the right key data type for #MongoDB

相关教程:

三招解决MongoDB的磁盘IO问题

由浅入深理解索引的实现

00 – 背景知识

- B-Tree & B+Tree

http://en.wikipedia.org/wiki/B%2B_tree
http://en.wikipedia.org/wiki/B-tree

- 折半查找(Binary Search)

http://en.wikipedia.org/wiki/Binary_search_algorithm

- 数据库的性能问题

A. 磁盘IO性能非常低,严重的影响数据库系统的性能。
B. 磁盘顺序读写比随机读写的性能高很多。

- 数据的基本存储结构

A. 磁盘空间被划分为许多大小相同的块(Block)或者页(Page).
B. 一个表的这些数据块以链表的方式串联在一起。
C. 数据是以行(Row)为单位一行一行的存放在磁盘上的块中,如图所示.
D. 在访问数据时,一次从磁盘中读出或者写入至少一个完整的Block。 Continue reading

查看mysql索引使用情况

查看索引使用情况

如果索引正在工作, Handler_read_key 的值将很高,这个值代表了一个行被索引值读的次数,很低的值表明增加索引得到的性能改善不高,因为索引并不经常使用。

Handler_read_rnd_next 的值高则意味着查询运行低效,并且应该建立索引补救。这个值的含义是在数据文件中读下一行的请求数。如果你正进行大量的表扫描,该值较高。通常说明表索引不正确或写入的查询没有利用索引。

语法:

mysql> show status like 'Handler_read%';

有关更多MySQL之Handler_read_*介绍参考:http://blog.haohtml.com/archives/4262

MySQL索引的索引长度问题

MySQL的每个单表中所创建的索引长度是有限制的,且对不同存储引擎下的表有不同的限制。查看索引可以使用show index from tbl_name命令,语法见:http://blog.haohtml.com/index.php/archives/1889
在MyISAM表中,创建组合索引时,创建的索引长度 不能超过1000,注意这里索引的长度的计算是根据表字段设定的长度来标量的,例如:

create table test(
id int,name1 varchar(300),
name2 varchar(300),
name3 varchar(500)
)charset=latin1 engine=myisam;

create index test_name on test(name1,name2,name3);

此时报错:Specified key was too long;max key length is 1000 bytes.

修改表结构:alter table test convert to charset utf8;
create index test_name3 on test(name3).
此时warning:Specified key was too long;max key length is 1000 bytes.但是索引创建成功,查看表结构可以看到创建的索引是一个前缀索引:‘key test_name3(name3(333))’ Continue reading

MySQL索引分析和优化(转)

什么是索引?

    索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存。如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录。表里面的记录数量越多,这个操作的代价就越高。如果作为搜索条件的列上已经创建了索引,MySQL无需扫描任何记录即可迅速得到目标记录所在的位置。如果表有1000个记录,通过索引查找记录至少要比顺序扫描记录快100倍。

假设我们创建了一个名为people的表:

CODE:
CREATE TABLE people ( peopleid SMALLINT NOT NULL, name CHAR(50) NOT NULL );

后,我们完全随机把1000个不同name值插入到people表。
可以看到,在数据文件中name列没有任何明确的次序。如果我们创建了name列的索引,MySQL将在索引中排序name列:
对于索引中的每一项,MySQL在内部为它保存一个数据文件中实际记录所在位置的“指针”。因此,如果我们要查找name等于“Mike”记录的peopleid(SQL命令为“SELECT peopleid FROM people WHERE name='Mike';”),MySQL能够在name的索引中查找“Mike”值,然后直接转到数据文件中相应的行,准确地返回该行的peopleid(999)。在这个过程中,MySQL只需处理一个行就可以返回结果。如果没有“name”列的索引,MySQL要扫描数据文件中的所有记录,即1000个记录!显然,需要MySQL处理的记录数量越少,则它完成任务的速度就越快。

索引的类型

MySQL提供多种索引类型供选择:

普通索引

这是最基本的索引类型,而且它没有唯一性之类的限制。普通索引可以通过以下几种方式创建:

CODE:
创建索引,例如CREATE INDEX <索引的名字>; ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD INDEX [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( [...], INDEX [索引的名字] (列的列表) );

唯一性索引

这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。唯一性索引可以用以下几种方式创建:

CODE:
创建索引,例如CREATE UNIQUE INDEX <索引的名字>; ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD UNIQUE [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( [...], UNIQUE [索引的名字] (列的列表)
);

主键

主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”。如果你曾经用过AUTO_INCREMENT类型的列,你可能已经熟悉主键之类的概念了。主键一般在创建表的时候指定,例如“CREATE TABLE tablename ( [...], PRIMARY KEY (列的列表) ); ”。但是,我们也可以通过修改表的方式加入主键,例如“ALTER TABLE tablename ADD PRIMARY KEY (列的列表); ”。每个表只能有一个主键。

全文索引

MySQL从3.23.23版开始支持全文索引和全文检索。在MySQL中,全文索引的索引类型为FULLTEXT。全文索引可以在VARCHAR或者TEXT类型的列上创建。它可以通过CREATE TABLE命令创建,也可以通过ALTER TABLE或CREATE INDEX命令创建。对于大规模的数据集,通过ALTER TABLE(或者CREATE INDEX)命令创建全文索引要比把记录插入带有全文索引的空表更快。本文下面的讨论不再涉及全文索引,要了解更多信息,请参见MySQL documentation。

单列索引与多列索引

索引可以是单列索引,也可以是多列索引。下面我们通过具体的例子来说明这两种索引的区别。假设有这样一个people表:

CODE:
CREATE TABLE people ( peopleid SMALLINT NOT NULL AUTO_INCREMENT, firstname CHAR(50)
NOT NULL, lastname CHAR(50) NOT NULL, age SMALLINT NOT NULL, townid SMALLINT NOT
NULL, PRIMARY KEY (peopleid) );

下面是我们插入到这个people表的数据:

这个数据片段中有四个名字为“Mikes”的人(其中两个姓Sullivans,两个姓McConnells),有两个年龄为17岁的人,还有一个名字与众不同的Joe Smith。

这个表的主要用途是根据指定的用户姓、名以及年龄返回相应的peopleid。例如,我们可能需要查找姓名为Mike Sullivan、年龄17岁用户的peopleid(SQL命令为SELECT peopleid FROM people WHERE firstname='Mike' AND lastname='Sullivan' AND age=17;)。由于我们不想让MySQL每次执行查询就去扫描整个表,这里需要考虑运用索引。

首先,我们可以考虑在单个列上创建索引,比如firstname、lastname或者age列。如果我们创建firstname列的索引(ALTER TABLE people ADD INDEX firstname (firstname);),MySQL将通过这个索引迅速把搜索范围限制到那些firstname='Mike'的记录,然后再在这个“中间结果集”上进行其他条件的搜索:它首先排除那些lastname不等于“Sullivan”的记录,然后排除那些age不等于17的记录。当记录满足所有搜索条件之后,MySQL就返回最终的搜索结果。

由于建立了firstname列的索引,与执行表的完全扫描相比,MySQL的效率提高了很多,但我们要求MySQL扫描的记录数量仍旧远远超过了实际所需要的。虽然我们可以删除firstname列上的索引,再创建lastname或者age列的索引,但总地看来,不论在哪个列上创建索引搜索效率仍旧相似。

为了提高搜索效率,我们需要考虑运用多列索引。如果为firstname、lastname和age这三个列创建一个多列索引,MySQL只需一次检索就能够找出正确的结果!下面是创建这个多列索引的SQL命令:

CODE:
ALTER TABLE people ADD INDEX fname_lname_age (firstname,lastname,age);

由于索引文件以B-树格式保存,MySQL能够立即转到合适的firstname,然后再转到合适的lastname,最后转到合适的age。在没有扫描数据文件任何一个记录的情况下,MySQL就正确地找出了搜索的目标记录!

那么,如果在firstname、lastname、age这三个列上分别创建单列索引,效果是否和创建一个firstname、lastname、age的多列索引一样呢?答案是否定的,两者完全不同。当我们执行查询的时候,MySQL只能使用一个索引。如果你有三个单列的索引,MySQL会试图选择一个限制最严格的索引。但是,即使是限制最严格的单列索引,它的限制能力也肯定远远低于firstname、lastname、age这三个列上的多列索引。

最左前缀

多列索引还有另外一个优点,它通过称为最左前缀(Leftmost Prefixing)的概念体现出来。继续考虑前面的例子,现在我们有一个firstname、lastname、age列上的多列索引,我们称这个索引为fname_lname_age。当搜索条件是以下各种列的组合时,MySQL将使用fname_lname_age索引:

CODE:
firstname,lastname,age
firstname,lastname
firstname

从另一方面理解,它相当于我们创建了(firstname,lastname,age)、(firstname,lastname)以及(firstname)这些列组合上的索引。下面这些查询都能够使用这个fname_lname_age索引:

CODE:
SELECT peopleid FROM people WHERE firstname='Mike' AND lastname='Sullivan' AND
age='17'; SELECT peopleid FROM people WHERE firstname='Mike' AND
lastname='Sullivan'; SELECT peopleid FROM people WHERE firstname='Mike'; The
following queries cannot use the index at all: SELECT peopleid FROM people WHERE
lastname='Sullivan'; SELECT peopleid FROM people WHERE age='17'; SELECT peopleid
FROM people WHERE lastname='Sullivan' AND age='17';

选择索引列

在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一。可以考虑使用索引的主要有两种类型的列:在WHERE子句中出现的列,在join子句中出现的列。请看下面这个查询:

CODE:
SELECT age ## 不使用索引 FROM people WHERE firstname='Mike' ## 考虑使用索引 AND
lastname='Sullivan' ## 考虑使用索引

这个查询与前面的查询略有不同,但仍属于简单查询。由于age是在SELECT部分被引用,MySQL不会用它来限制列选择操作。因此,对于这个查询来说,创建age列的索引没有什么必要。下面是一个更复杂的例子:

CODE:
SELECT people.age, ##不使用索引 town.name ##不使用索引 FROM people LEFT JOIN town ON
people.townid=town.townid ##考虑使用索引 WHERE firstname='Mike' ##考虑使用索引 AND
lastname='Sullivan' ##考虑使用索引

与前面的例子一样,由于firstname和lastname出现在WHERE子句中,因此这两个列仍旧有创建索引的必要。除此之外,由于town表的townid列出现在join子句中,因此我们需要考虑创建该列的索引。

那么,我们是否可以简单地认为应该索引WHERE子句和join子句中出现的每一个列呢?差不多如此,但并不完全。我们还必须考虑到对列进行比较的操作符类型。MySQL只有对以下操作符才使用索引:<,<=,=,>;,>;=,BETWEEN,IN,以及某些时候的LIKE。可以在LIKE操作中使用索引的情形是指另一个操作数不是以通配符(%或者_)开头的情形。例如,“SELECT peopleid FROM people WHERE firstname LIKE 'Mich%';”这个查询将使用索引,但“SELECT peopleid FROM people WHERE firstname LIKE '%ike';”这个查询不会使用索引。

分析索引效率

现在我们已经知道了一些如何选择索引列的知识,但还无法判断哪一个最有效。MySQL提供了一个内建的SQL命令帮助我们完成这个任务,这就是EXPLAIN命令。EXPLAIN命令的一般语法是:EXPLAIN <SQL命令>;。你可以在MySQL文档找到有关该命令的更多说明。下面是一个例子:

CODE:
EXPLAIN SELECT peopleid FROM people WHERE firstname='Mike' AND lastname='Sullivan'
AND age='17';

这个命令将返回下面这种分析结果:

table      type    possible_keys          key                         key_len       ref                          rows     Extra
people   ref       fname_lname_age   fname_lname_age  102 const,const,const  1           Where used

下面我们就来看看这个EXPLAIN分析结果的含义。

table:这是表的名字。

type:连接操作的类型。下面是MySQL文档关于ref连接类型的说明:

“对于每一种与另一个表中记录的组合,MySQL将从当前的表读取所有带有匹配索引值的记录。如果连接操作只使用键的最左前缀,或者如果键不是UNIQUE或PRIMARY KEY类型(换句话说,如果连接操作不能根据键值选择出唯一行),则MySQL使用ref连接类型。如果连接操作所用的键只匹配少量的记录,则ref是一种好的连接类型。”

在本例中,由于索引不是UNIQUE类型,ref是我们能够得到的最好连接类型。

如果EXPLAIN显示连接类型是“ALL”,而且你并不想从表里面选择出大多数记录,那么MySQL的操作效率将非常低,因为它要扫描整个表。你可以加入更多的索引来解决这个问题。预知更多信息,请参见MySQL的手册说明。

possible_keys:

可能可以利用的索引的名字。这里的索引名字是创建索引时指定的索引昵称;如果索引没有昵称,则默认显示的是索引中第一个列的名字(在本例中,它是“firstname”)。默认索引名字的含义往往不是很明显。

Key:

它显示了MySQL实际使用的索引的名字。如果它为空(或NULL),则MySQL不使用索引。

key_len:

索引中被使用部分的长度,以字节计。在本例中,key_len是102,其中firstname占50字节,lastname占50字节,age占2字节。如果MySQL只使用索引中的firstname部分,则key_len将是50。

ref:

它显示的是列的名字(或单词“const”),MySQL将根据这些列来选择行。在本例中,MySQL根据三个常量选择行。

rows:

MySQL所认为的它在找到正确的结果之前必须扫描的记录数。显然,这里最理想的数字就是1。

Extra:

这里可能出现许多不同的选项,其中大多数将对查询产生负面影响。在本例中,MySQL只是提醒我们它将用WHERE子句限制搜索结果集。

索引的缺点

到目前为止,我们讨论的都是索引的优点。事实上,索引也是有缺点的。

首先,索引要占用磁盘空间。通常情况下,这个问题不是很突出。但是,如果你创建每一种可能列组合的索引,索引文件体积的增长速度将远远超过数据文件。如果你有一个很大的表,索引文件的大小可能达到操作系统允许的最大文件限制。

第二,对于需要写入数据的操作,比如DELETE、UPDATE以及INSERT操作,索引会降低它们的速度。这是因为MySQL不仅要把改动数据写入数据文件,而且它还要把这些改动写入索引文件。

【结束语】在大型数据库中,索引是提高速度的一个关键因素。不管表的结构是多么简单,一次500000行的表扫描操作无论如何不会快。如果你的网站上也有这种大规模的表,那么你确实应该花些时间去分析可以采用哪些索引,并考虑是否可以改写查询以优化应用。要了解更多信息,请参见MySQL manual。另外注意,本文假定你所使用的MySQL是3.23版,部分查询不能在3.22版MySQL上执行。