Golang中strcut结构体的的值方法和指针方法

平时我们在写struct的时候,经常会用到一些方法,有些方法是我们熟悉的普通方法,在golang中我们称之为值方法,而另一种则是指针方法。

type Person struct {
    Firstname string
    Lastname string
    Age uint8
}
// 值方法
func (p Person) show() {
    fmt.Println(p.Firstname)
}

// 指针方法
func (p *Person) show2() {
    fmt.Println(p.Firstname)
}

可以看到所谓的值方法与指针方法在编写的时候,只是有无*号的区别,这个*就是指针的意思。

那么用法又有何不同呢?

// 值方法
func (p Person) setFirstName(name string) {
	p.Firstname = name
}
// 指针方法
func (p *Person) setFirstName2(name string) {
	p.Firstname = name
}

func main() {
	p := Person{"sun", "xingfang", 30}

	//不一致的情况
	p.show() // sun 修改前
	p.setFirstName("tom")	// 值方法
	p.show() // sun, 未变化

	p.show() // sun 修改前
	p.setFirstName2("tom")	// 指针方法
	p.show() // tom 修改后的tom
}

通过上面的输出我们可以看到,当调用值方法setFirstName后,输出的还是原来的值sun,而调用指针方法 setFirstNam2后,则输出的是新值。主要原因就是值方法在传递总结体的时候,用的只是原来结构体的一个副本,做的任何修改也只是对副本的修改,而打印的还是原来的结构体,两者互不影响。而指针方法,传递的则是指向结构体指针的值副本,指针值一样(X012242R424),指定的都是底层的数据结构,所以才会出现这种情况。

总结:

  1. 值方法的接收者是该方法所属的那个类型值的一个副本。我们在该方法内对该副本的修1改一般都不会体现在原值上,除非这个类型本身是某个引用类型(比如切片或字典)的别名类型。 而指针方法的接收者,是该方法所属的那个基本类型值的指针值的一个副本。我们在这样的方法内对该副本指向的值进行修改,却一定会体现在原值上。
  2. 一个自定义数据类型的方法集合中仅会包含它的所有值方法,而该类型的指针类型的方法集合却囊括了前者的所有方法,包括所有值方法所有指针方法
    严格来讲,我们在这样的基本类型的值上只能调用到它的值方法
    但是,Go 语言会适时地为我们进行自动地转译,使得我们在这样的值上也能调用到它的指针方法。本示例中的 p.show() 在调用的时候会自动转换成 show2() 这种指针方式,可以试着将例子中的 show() 改成 show2() 输出结果是一样的)比如,在Cat类型的变量cat之上,之所以我们可以通过cat.SetName(“monster”)修改猫的名字,是因为 Go 语言把它自动转译为了(&cat).SetName(“monster”),即:先取cat的指针值,然后在该指针值上调用SetName方法。以上是由“郝林”老师在“Go语言核心36讲”专栏中总结。
  3. 两种写法在使用接口的时候也会有所不同。

Golang中的unsafe.Sizeof()简述

测试环境:
系统 win7 64位
go version: go1.10 windows/amd64

我们先看一下代码的输出

package main

import "unsafe"

func main() {
	// string
	str1 := "abc"
	println("string1:", unsafe.Sizeof(str1)) // 16
	str2 := "abcdef"
	println("string2:", unsafe.Sizeof(str2)) // 16
	
	// 数组
	arr1 := [...]int{1, 2, 3, 4}
	println("array1:", unsafe.Sizeof(arr1)) // 32 = 8 * 4

	arr2 := [...]int{1, 2, 3, 4, 5}
	println("array2:", unsafe.Sizeof(arr2)) // 40 = 8 * 5

	// slice 好多人分不清切片和数组的写法区别,其实只要记住[]中间是空的就是切片,反之则是数组即可
	slice1 := []int{1, 2, 3, 4}
	println("slice1:", unsafe.Sizeof(slice1)) // 24

	slice2 := []int{1, 2, 3, 4, 5}
	println("slice2:", unsafe.Sizeof(slice2)) // 24

	slice3 := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
	println("slice3:", unsafe.Sizeof(slice3)) // 24
}
1、字符串类型
为什么字符串类型的 unsafe.Sizeof() 一直是16呢?
实际上字符串类型对应一个结构体,该结构体有两个域,第一个域是指向该字符串的指针,第二个域是字符串的长度,每个域占8个字节,但是并不包含指针指向的字符串的内容,这也就是为什么sizeof始终返回的是16。
组成可以理解成此结构体
typedef struct {
    char* buffer;
    size_tlen;
} string;
2、数组类型
编译的时候系统自动分配内存,int的长度是由系统平台来决定的,我用的是64位的系统,所以一个int 代表的就是 int64 数据类型,每个数字占用8个字节,成员数组元素个数正好等于输出的值。byte(1字节),uint8(1字节),uint16(2字节),uint32(4字节),uint64(占用8字节), byte是uint8的别名,这些全是无符号型的,对应的还有有符号型的,区别也就是一个值范围不同而已。

不同数据类型占用字节大小如下:

func main() {
	var a uint8
	a = 2
	fmt.Println("uint8 type size:", unsafe.Sizeof(a))

	var b uint16
	b = 2
	fmt.Println("uint16 type size:", unsafe.Sizeof(b))

	
	var c uint32
	c = 2
	fmt.Println("uint32 type size:", unsafe.Sizeof(c))
	
	var d uint64
	d = 2
	fmt.Println("uint64 type size:", unsafe.Sizeof(d))
}

数据类型

具体类型 取值范围
int8 -128到127
uint8 0到255
int16 -32768到32767
uint16 0到65535
int32 -2147483648到2147483647
uint32 0到4294967295
int64 -9223372036854775808到9223372036854775807
uint64 0到18446744073709551615
3、切片类型
可以看到切片和数组还是有些不一样的,我们看一下官方包的解释 /src/unsafe/unsafe.go
// Sizeof takes an expression x of any type and returns the size in bytes
// of a hypothetical variable v as if v was declared via var v = x.
// The size does not include any memory possibly referenced by x.
// For instance, if x is a slice, Sizeof returns the size of the slice
// descriptor, not the size of the memory referenced by the slice.
意思是说如果是slice的话,则返回的是slice描述符的长度,而不是slice的内存长度。

Golang中的调度器

介绍(Introduction)
———————
Go 1.1最大的特色之一就是这个新的调度器,由Dmitry Vyukov贡献。新调度器让并行的Go程序获得了一个动态的性能增长,针对它我不能再做点更好的工作了,我觉得我还是为它写点什么吧。

这篇博客里面大多数东西都已经被包含在了[原始设计文档](https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw)中了,这个文档的内容相当广泛,但是过于技术化了。

关于新调度器,你所需要知道的都在那个设计文档中,但是我这篇博客有图片,所以更加清晰易懂。

带调度器的Go runtime需要什么?(What does the Go runtime need with a scheduler?)
——————————————————————————-
但是在我们开始看新调度器之前,我们需要理解为什么需要调度器。为什么既然操作系统能为我们调度线程了,我们又创造了一个用户空间调度器? Continue reading

[译]Go里面的unsafe包详解

unsafe包位置: src/unsafe/unsafe.go

https://gocn.vip/question/371

指针类型:
*类型:普通指针,用于传递对象地址,不能进行指针运算。
unsafe.Pointer:通用指针,用于转换不同类型的指针,不能进行指针运算。
uintptr:用于指针运算,GC 不把 uintptr 当指针,uintptr 无法持有对象。uintptr 类型的目标会被回收。

unsafe.Pointer 可以和 普通指针 进行相互转换。
unsafe.Pointer 可以和 uintptr 进行相互转换。

也就是说 unsafe.Pointer 是桥梁,可以让任意类型的指针实现相互转换,也可以将任意类型的指针转换为 uintptr 进行指针运算。

一般使用流程:
第一步:将结构体->通用指针unsafe.Pointer(struct)->uintptr(通用指针)获取内存段的起始位置start_pos,并记录下来,第二步使用。
第二步:使用start_pos + unsafe.Offsetof(s.b)->将地址转为能用指针unsafe.Pointer(new_pos)->转为普通指针np = (*byte)(p)->赋值 *np = 20
第三步:打印结构体,发现内容发生了更改。

参考:https://www.cnblogs.com/golove/p/5909968.html

推荐:unsafe.Sizeof() 针对不同数据类型的情况

golang中slice切片理解总结

首先我们对切片有一个大概的理解,先看一下slice的内部结构,共分三部分,一个是指向底层数组的时候,一个是长度len,另一个就是slice的容量cap了。如cap不足以放在新值的时候,会产生新的内存地址申请。

先看代码

package main

import "fmt"

func main() {
	// 创建一个切片,长度为9,容量为10
	fmt.Println("----- 1.测试切片变量append的影响(未申请新的内存空间)-----")
	a := make([]int, 9, 10)
	fmt.Printf("%p len=%d cap=%d %v\n", a, len(a), cap(a), a)

	// 切片进行append操作,由于原来len(a)长度为9,而cap(a)容量为10,未达到扩展内存的要求,此时新创建的切片变量还指向原来的底层数组,只是数组的后面添加一个新值
	// 此时一共两个切片变量,一个是a,另一个是s4。但共指向的一个内存地址
	s4 := append(a, 4)
	fmt.Printf("%p len=%d cap=%d %v\n\n", s4, len(s4), cap(s4), s4)

	// 测试上面提到的切片变量a和s4共指向同一个内存地址, 发现切片数组的第一个值都为7,而唯一不同的是len的长度,而cap仍为10
	fmt.Println("----- 2.测试切片变量共用一个底层数组(内存地址一样)-----")
	a[0] = 7
	fmt.Printf("%p len=%d cap=%d %v\n", a, len(a), cap(a), a)
	fmt.Printf("%p len=%d cap=%d %v\n\n", s4, len(s4), cap(s4), s4)

	// 切片进行append操作后,发现原来的cap(a)的长度已用完了(因为a和s4共用一个底层数组,你也可以理解为cap(s4)),此时系统需要重新申请原cap*2大小的内存空间,所以cap值为10*2=20,将把原来底层数组的值复制到新的内存地址
	// 此时有两个底层数组,一个是切片变量a和s4指向的数组,另一个就是新的切片变量s4
	fmt.Println("----- 3.测试切片变量append的影响(申请了新的内存空间,内存地址不一样了)-----")
	s4 = append(s4, 5)
	fmt.Printf("%p len=%d cap=%d %v\n\n", s4, len(s4), cap(s4), s4)

	// 注意:原切片未发生任何变化,(打印a[0]=7是因为上面第3段落代码已把默认的0值改为了7)
	fmt.Println("----- 4.测试原切片变量a未发生变化-----")
	fmt.Printf("%p len=%d cap=%d %v\n\n", a, len(a), cap(a), a)
}

运行结果:

----- 1.测试切片变量append的影响(未申请新的内存空间)-----
0x10450030 len=9 cap=10 [0 0 0 0 0 0 0 0 0]
0x10450030 len=10 cap=10 [0 0 0 0 0 0 0 0 0 4]

----- 2.测试切片变量共用一个底层数组-----
0x10450030 len=9 cap=10 [7 0 0 0 0 0 0 0 0]
0x10450030 len=10 cap=10 [7 0 0 0 0 0 0 0 0 4]

----- 3.测试切片变量append的影响(申请了新的内存空间)-----
0x10458050 len=11 cap=20 [7 0 0 0 0 0 0 0 0 4 5]

----- 4.测试原切片变量a未发生变化-----
0x10450030 len=9 cap=10 [7 0 0 0 0 0 0 0 0]

在线运行代码:https://play.golang.org/p/pfxZa8T0H1_g

当对slice进行append的时候,会出现以下情况:
1.如果cap超出了原slice的cap长度,则申请原来cap*2的内存空间,再把原来切片所指的底层数组的值复制一份存储到新申请的内存空间里,这样是两块内存地址了,所有原来slice指的底层数组内容没有变化的。此时两个切片,两个底层数组了,每个切片有自己对应的底层数组。
2.如果cap没超出原slice的cap的话,底层对应的数组是没有变化的,但会产生一个新的slice变量,仍然会指向到原来的底层数组(这个新slice变量有自己的内存地址,我们不用关心它,只需要关心他对应的底层数组就可以了)。这时一共两个切片,但共用一个底层数组。

总结:
1.当对slice进行append的时候,如果原slice可以存放下新增加的值,则不会申请新的内存空间,否则会申请cap*2大小基准申请内存空间。而当cap>=1024的时候,会以cap*1.25倍的大小空间基准申请内存空间。
2.每次切片进行append操作,都会返回一个新的切片变量,这个变量有自己的内存地址。 这点开发者知道这点就可以了,一般不用不用关心这点。
3.当切片进行append后,原切片对应的底层数组是不会变化的,这点见第4点。

请参考golang开发源码包 src/runtime/slice.go 中的growslice函数,可以看到对于cap的增长处理逻辑。

Linux下对进程通信管理的信号机制概述

今天看到了篇使用golang实现的系统无感重启的文章,https://gravitational.com/blog/golang-ssh-bastion-graceful-restarts/,一般用来平滑处理一些系统服务,避免先停止再启用导致的服务不可用的情况。其中用到了信号机制,这里找了一些文章主要有来介绍这方面的文章,以便加深理解。https://blog.csdn.net/junyucsdn/article/details/50519248

https://blog.csdn.net/tiany524/article/details/17048069

https://my.oschina.net/chenliang165/blog/125825